The Evolution of Python Programmers NOT only a Joke

Earth-icon I remembered reading an article similar “Evolution of a C++ Programmer” or “Evolution of a C Programmer” or “The Evolution of a Haskell Programmer” before, I laughed out loud! I think that’s only a joke by some boring guys, at most they can serve a good pedagogical purpose as well as a humorous one. Last year, I lead a team to develop a Java-based tool – all team members are COBOL background and without any java skill.

Give thanks to god! Ultimately, we finished this project. I reviewed all source, Java source code with COBOL style, and in the meanwhile, unintentionally I read another article  The Evolution of a Python Programmer(original be posted here), which lets me to remember and begin to think, The Evolution of XXX Programmer should not be only a Joke.

Not only the evolution of a programmer, in fact, the same phenomena happened on many items in daily. For YOU, what should YOU, and WE, can think and understand from them?


Newbie Programmer

def factorial(x):
    if x == 0:
        return 1
        return x * factorial(x - 1)
print factorial(6)

First Year Programmer (Studied Pascal)

def factorial(x):
    result = 1
    i = 2
    while i <= x:
        result = result * i
        i = i + 1
    return result
print factorial(6)

First Year Programmer (Studied C)

def fact(x): #{
    result = i = 1;
    while (i <= x): #{
        result *= i;
        i += 1;
    return result;

First Year Programmer (Read SICP)

def fact(x, acc=1):
    if (x > 1): return (fact((x - 1), (acc * x)))
    else:       return acc


First Year Programmer (Python)

def Factorial(x):
    res = 1
    for i in xrange(2, x + 1):
        res *= i
    return res
print Factorial(6)


Lazy Python Programmer

def fact(x):
    return x > 1 and x * fact(x - 1) or 1
print fact(6)


Lazier Python Programmer

f = lambda x: x and x * f(x - 1) or 1
print f(6)


Python Expert Programmer

fact = lambda x: reduce(int.__mul__, xrange(2, x + 1), 1)
print fact(6)


Python Hacker

import sys
def fact(x, acc=1):
    if x: return fact(x.__sub__(1), acc.__mul__(x))
    return acc
sys.stdout.write(str(fact(6)) + '\n')



from c_math import fact
print fact(6)



from c_maths import fact
print fact(6)


Web Designer

def factorial(x):
    #--- Code snippet from The Math Vault          ---
    #--- Calculate factorial (C) Arthur Smith 1999 ---
    result = str(1)
    i = 1 #Thanks Adam
    while i <= x:
        #result = result * i  #It's faster to use *=
        #result = str(result * result + i)
           #result = int(result *= i) #??????
        result = str(int(result) * i)
        #result = int(str(result) * i)
        i = i + 1
    return result
print factorial(6)


Unix Programmer

import os
def fact(x):
    os.system('factorial ' + str(x))


Windows Programmer

NULL = None
def CalculateAndPrintFactorialEx(dwNumber,
    if lpsscSecurity != NULL:
        return NULL #Not implemented
    dwResult = dwCounter = 1
    while dwCounter <= dwNumber:
        dwResult *= dwCounter
        dwCounter += 1
    return 1
import sys
CalculateAndPrintFactorialEx(6, sys.stdout, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)


Enterprise Programmer

def new(cls, *args, **kwargs):
    return cls(*args, **kwargs)

class Number(object):

class IntegralNumber(int, Number):
    def toInt(self):
        return new (int, self)

class InternalBase(object):
    def __init__(self, base):
        self.base = base.toInt()

    def getBase(self):
        return new (IntegralNumber, self.base)

class MathematicsSystem(object):
    def __init__(self, ibase):

    def getInstance(cls, ibase):
        except AttributeError:
            cls.__instance = new (cls, ibase)
        return cls.__instance

class StandardMathematicsSystem(MathematicsSystem):
    def __init__(self, ibase):
        if ibase.getBase() != new (IntegralNumber, 2):
            raise NotImplementedError
        self.base = ibase.getBase()

    def calculateFactorial(self, target):
        result = new (IntegralNumber, 1)
        i = new (IntegralNumber, 2)
        while i <= target:
            result = result * i
            i = i + new (IntegralNumber, 1)
        return result

print StandardMathematicsSystem.getInstance(new (InternalBase, new (IntegralNumber, 2))).calculateFactorial(new (IntegralNumber, 6))
Share and Enjoy:
  • Digg
  • Facebook
  • Google Bookmarks
  • DZone
  • Reddit
  • Technorati
  • StumbleUpon
  • Twitter
RSS Enjoy this Post? Subscribe to

RSS Feed   RSS Feed     Email Feed  Email Feed Follow us Follow us
You can leave a response, or trackback from your own site.

Leave a Reply