﻿ The Evolution of Python Programmers NOT only a Joke - Ntt.cc

The Evolution of Python Programmers NOT only a Joke I remembered reading an article similar “Evolution of a C++ Programmer” or “Evolution of a C Programmer” or “The Evolution of a Haskell Programmer” before, I laughed out loud! I think that’s only a joke by some boring guys, at most they can serve a good pedagogical purpose as well as a humorous one. Last year, I lead a team to develop a Java-based tool – all team members are COBOL background and without any java skill.

Give thanks to god! Ultimately, we finished this project. I reviewed all source, Java source code with COBOL style, and in the meanwhile, unintentionally I read another article  The Evolution of a Python Programmer(original be posted here), which lets me to remember and begin to think, The Evolution of XXX Programmer should not be only a Joke.

Not only the evolution of a programmer, in fact, the same phenomena happened on many items in daily. For YOU, what should YOU, and WE, can think and understand from them?

Newbie Programmer

def factorial(x):
if x == 0:
return 1
else:
return x * factorial(x - 1)
print factorial(6)

First Year Programmer (Studied Pascal)

def factorial(x):
result = 1
i = 2
while i &lt;= x:
result = result * i
i = i + 1
return result
print factorial(6)

First Year Programmer (Studied C)

def fact(x): #{
result = i = 1;
while (i &lt;= x): #{
result *= i;
i += 1;
#}
return result;
#}
print(fact(6))

First Year Programmer (Read SICP)

@tailcall
def fact(x, acc=1):
if (x &gt; 1): return (fact((x - 1), (acc * x)))
else:       return acc
print(fact(6))

First Year Programmer (Python)

def Factorial(x):
res = 1
for i in xrange(2, x + 1):
res *= i
return res
print Factorial(6)

Lazy Python Programmer

def fact(x):
return x &gt; 1 and x * fact(x - 1) or 1
print fact(6)

Lazier Python Programmer

f = lambda x: x and x * f(x - 1) or 1
print f(6)

Python Expert Programmer

fact = lambda x: reduce(int.__mul__, xrange(2, x + 1), 1)
print fact(6)

Python Hacker

import sys
@tailcall
def fact(x, acc=1):
if x: return fact(x.__sub__(1), acc.__mul__(x))
return acc
sys.stdout.write(str(fact(6)) + '\n')

EXPERT PROGRAMMER

from c_math import fact
print fact(6)

BRITISH EXPERT PROGRAMMER

from c_maths import fact
print fact(6)

Web Designer

def factorial(x):
#-------------------------------------------------
#--- Code snippet from The Math Vault          ---
#--- Calculate factorial (C) Arthur Smith 1999 ---
#-------------------------------------------------
result = str(1)
i = 1 #Thanks Adam
while i &lt;= x:
#result = result * i  #It's faster to use *=
#result = str(result * result + i)
#result = int(result *= i) #??????
result = str(int(result) * i)
#result = int(str(result) * i)
i = i + 1
return result
print factorial(6)

Unix Programmer

import os
def fact(x):
os.system('factorial ' + str(x))
fact(6)

Windows Programmer

NULL = None
def CalculateAndPrintFactorialEx(dwNumber,
hOutputDevice,
lpLparam,
lpWparam,
lpsscSecurity,
*dwReserved):
if lpsscSecurity != NULL:
return NULL #Not implemented
dwResult = dwCounter = 1
while dwCounter &lt;= dwNumber:
dwResult *= dwCounter
dwCounter += 1
hOutputDevice.write(str(dwResult))
hOutputDevice.write('\n')
return 1
import sys
CalculateAndPrintFactorialEx(6, sys.stdout, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)

Enterprise Programmer

def new(cls, *args, **kwargs):
return cls(*args, **kwargs)

class Number(object):
pass

class IntegralNumber(int, Number):
def toInt(self):
return new (int, self)

class InternalBase(object):
def __init__(self, base):
self.base = base.toInt()

def getBase(self):
return new (IntegralNumber, self.base)

class MathematicsSystem(object):
def __init__(self, ibase):
Abstract

@classmethod
def getInstance(cls, ibase):
try:
cls.__instance
except AttributeError:
cls.__instance = new (cls, ibase)
return cls.__instance

class StandardMathematicsSystem(MathematicsSystem):
def __init__(self, ibase):
if ibase.getBase() != new (IntegralNumber, 2):
raise NotImplementedError
self.base = ibase.getBase()

def calculateFactorial(self, target):
result = new (IntegralNumber, 1)
i = new (IntegralNumber, 2)
while i <= target:
result = result * i
i = i + new (IntegralNumber, 1)
return result

print StandardMathematicsSystem.getInstance(new (InternalBase, new (IntegralNumber, 2))).calculateFactorial(new (IntegralNumber, 6)) Enjoy this Post? Subscribe to Ntt.cc RSS Feed Email Feed Follow us
You can leave a response, or trackback from your own site.